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Abstract—Swarming is the natural mechanism by which bee
colonies reproduce, but for beekeepers it is a challenge. Precision
beekeeping can aid their work through early notifications about
impending swarms. In this work, we focus on identifying swarms
and their early indicators in audio data captured from a smart
beehive. The challenge with such domain-specific data is the low
availability of labelled samples, the strong label imbalance, and
the recording of undesired sources. We approach this challenge
through a two-step setup: First, we use an auto encoder network
to detect sounds from mechanical sources and then use it to clean
data. Secondly, on the cleaned data we then employ a second
network to identify event-related bee sounds. Using spectrogram
features, our networks are able to reach a balanced accuracy
score of more than 99% in the detection of special bee events.
The findings of this initial study can serve as the starting point for
further research on handling imbalanced data collections from
smart, remote sensor environments that also contain undesired
signals.

Index Terms—audio processing, machine learning, auto encod-
ing networks, precision beekeeping

I. INTRODUCTION

Swarming is a natural mechanism by which bee colonies
reproduce and takes place in late spring and early summer.
During a swarm, the old queen and 50% to 70% of the
worker bees leave the hive and found a new colony, while a
young queen takes over the old colony. In standard European
beekeeping, apiarists try to prevent swarming altogether, which
requires regular and intensive interactions with the colonies.
One way to reduce interaction is to monitor these colonies
using precision beekeeping systems to detect early swarm
indicators that can assist beekeepers in their decision making.
Due to the widespread availability of affordable electronic
sensors, the setup of the required precision beekeeping systems
is much easier and allows the automated observation of the
bee colonies. In the we4bee project1, such smart beehives
equipped with many sensors have been distributed to mainly
educational institutions in Germany. These smart bee hives are
continuously collecting data and form the base of the analysis.

However, a challenge is the availability of labelled data.
While the installed sensors monitor the beehives around the
clock, labelling the data incurs massive manual effort, as
domain experts are necessary to reach high label accuracy
and high inter-annotator agreement. In addition, special bee

1https://we4bee.org
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Fig. 1. Our proposed two-staged approach. On the we4bee audio dataset, the
first stage uses auto encoders to detect and filter mechanical sounds (left),
and the second stage uses auto encoders to identify the swarming event and
pre-swarming phase of bees in the filtered data (right).

events such as swarming are exceedingly rare and tend to
occur in fixed parts of the year only. This leads to a high
label imbalance, where the normal behaviour is dominantly
represented in the data and the events of interest are very
sparse. The analysis of such data requires methods that can
handle highly imbalanced and sparsely labeled data sets. In
this paper, we present an approach based on auto encoders,
visualized in fig. 1, that allows us to detect samples from
multiple classes in audio data recorded from one exemplary
beehive. Our contributions are:

• introducing a mid-sized (∼6000 data points) audio dataset
with 5 classes

• modelling the problem via a two-step anomaly detection
approach

• identifying swarms with high precision in audio data
using auto encoders

II. RELATED WORK

The “To bee or not to bee” dataset [1] contains audio
recordings from the OpenSource bee hive (OSBH) 2 and NU-
Hive [2] projects. The dataset provides 12 hours of audio data,
with segments labelled as containing bee sounds constituting
25% of the total recordings; the remaining segments are
labelled as not containing bee sounds. On this dataset, Nolasco
and Benetos [3] evaluate the use of a support vector machine
classifier (SVM) and a convolutional neural network (CNN).
Their study shows that an SVM classifier is mostly superior to
a CNN, but also indicates that a larger context (i.e., a longer

2https://fablabbcn.org/projects/osbh-open-source-beehives
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Fig. 2. Spectrograms of the classes contained in we4bee audio dataset. Row-
wise, classes camera, finedust, pre-swarming and swarming are visualized.
Camera samples contain two distinctive short spikes, and finedust samples
have a noticeable block of increased energy between 512Hz and 2048Hz.
The short-lived swarming of a bee colony produces clearly audible buzzing
sounds, which can be seen in the swarm sample.

audio input) can improve the network’s performance. We build
upon these findings and use 15 s audio data as input.

Research by Žgank [4] used recordings from the OSBH
project to train a one-state hidden Markov model (HMM) to
detect bee swarms. Their work uses 65min of audio data in
total, of which 45min are swarming data. After pre-processing
the source signals to 16 kHz mono audio, [4] extract mel
frequency cepstral coefficients and label the recordings as
normal or swarm. On the annotated data, the HMM achieves an
accuracy score of 80.89%. In our work, we deviate from this
approach by using 44 kHz stereo recordings and do not employ
any re-sampling strategies. Kulyukin et al. [5] introduce two
datasets, which are composed of audio recordings of bees,
crickets, and ambient noise. The “Buzz1” dataset contains
10260 samples, and the “Buzz2” dataset consists of 12914
samples. Each sample is manually labelled into one of the
three classes and 2 s in duration. The authors use a CNN to
classify raw audio snippets and spectrogram representations.
In contrast to this research, we use convolutional AEs on
spectrograms covering 15 s.

Davidson et al. [6] use an AE on temperature data collected
from four beehives. Their study focuses on the typical swarm-
ing period, May to September, and focuses on the general
detection of anomalous signals, not just the swarming events.
Their approach allows them to detect external influences on
the monitored beehive, such as the opening of the lid to yield
honey. Our research extends Davidson et al.’s usage of an AE
to the detection of anomalous data in audio recordings.

Finally, Hadjur et al. [7] provide an overview of machine
learning approaches in precision beekeeping. They show that
researchers mainly use image, temperature, and audio data in

TABLE I
NUMBER OF 15 S SAMPLES PER CLASS IN THE TRAIN, VALIDATION, AND

TEST SUBSET OF THE WE4BEE AUDIO DATASET.

Class
Subset (total) pre-swarm swarm camera finedust other

Train (2722) 45 32 73 353 2219
Validation (681) 11 8 18 89 555
Test (3096) 60 40 78 681 2237

Total (6499) 116 80 169 1123 5011

their research. Further, their analysis uncovers that scholars
mainly use spectral features (e.g., short-time Fourier transfor-
mations) and their derivatives (e.g., mel-scaled spectrograms).
Following these findings, we also use spectrograms as features.

The datasets so far discussed and used by the related
work are all labelled or annotated in some way. Our dataset,
described in section III, differs from this and poses two
challenges: first, it is largely unlabelled, and second, the few
labels are distributed in a highly imbalanced way. Using this
dataset, we build upon related research and use spectrograms
to train AE networks on challenging audio recordings collected
from a smart beehive.

III. WE4BEE AUDIO DATASET

The we4bee project runs app. 100 smart beehives, which
are all equipped with two microphones. Since almost three
years, one of the hive collects the audio data which results
in approximately 20 000 h of unlabelled audio recordings. As
mentioned in section I, labelling a dataset of this size is
expensive and relies on manual labelling by domain experts.
Furthermore, the events of interest are very rare which makes
it even more difficult to come up with a proper dataset. To
construct an initial dataset, we restricted the data collection
to a selection of twelve days, of which 30min excerpts from
eight days cover the bee’s winter period, two days cover the
swarming, and two days constitute recordings where no special
bee events occurred.

The we4bee audio dataset consists of 1625 stereo au-
dio recordings sampled at 44.4 kHz, captured on four different
and non-consecutive days, with each 60 s recording being
split into four non-overlapping 15 s snippets. The dataset is
divided into distinct train and test sets, which were recorded
on different days, prohibiting data leakage.

In our data, we identified four classes, visualized in fig. 2:
two classes of particular interest to apiarists, pre-swarm and
swarm (which denote samples in which the bees are in a pre-
swarming and swarming state, respectively), and two classes of
sounds from mechanical sources. These two classes, finedust
and camera, identify samples on which the smart beehive’s
automated monitoring system could be heard. Lastly, samples
that could not be positively assigned to one of the previous
classes were collected in an additional fifth class called other.

The labels for the mechanical classes were derived by
mapping the recording’s timestamps to the times at which the
automated monitoring systems were running. The labels for



TABLE II
RANGES FOR THE HYPERPARAMETER SEARCH. Filters DETERMINES THE

SIZE OF THE CONVOLUTION FILTERS IN CONNECTION WITH THE NUMBER
OF ENCODING LAYERS (NOT OPTIMIZED).

Parameter Search range

Learning rate [0.0001, 0.01], uniform
Epochs [20, 300], step size of 10
Batch size [8, 32], step size of 8
Latent size [8, 256], step size of 8
Filters [8, 64], step size of 4

swarms are derived from beekeeping logs and by checking
the hive’s weight for sudden drops that lead to consistently
lower weight. For the pre-swarm class, we labelled a duration
of 15min prior to the actual swarming event as pre-swarm.
From the training data, stratified 20% of the samples are used
as a validation subset, leading to the distribution shown in
table I. Due to the challenge of appropriately labelling data
samples, our amount of labelled data is small compared to the
larger, but unlabelled, other class.

IV. METHODS

Anomaly detection is the task of separating well-defined
data points from outliers which are called normal data points
and anomalous data points respectively [8, 9]. We frame our
swarming detection task as a two-stage anomaly detection task
shown in fig. 1: the first stage learns to identify mechanical
sounds, the second stage learns to identify swarms and pre-
swarms against the other background. To this end, we employ
auto encoders (AE) as anomaly detectors [9, 10, 11]. These
AEs consist of two parts: the encoder and the decoder. The
encoding stage learns a dimensionality-reduced version of the
data, which is projected into a latent space smaller than the in-
put size [12]. From this space, the decoder learns to reconstruct
the original input data. In the context of anomaly detection,
the AE is trained on normal, non-anomalous data only, using a
cost function that computes a difference between the original
input and its reconstruction, such as the mean-squared error
function. To detect anomalous data points, various methods
exist [9]. One common method is calculating a threshold [13].
In our work, this threshold was determined by maximizing the
F1 score of the anomalous class on the validation data set.

The AE’s encoder encodes the 64 x 512 x 2 inputs via a
stack of 5 convolution layers and one linear layer into the
flattened representation, leading to the latent space of size N .
All encoding layers use relu activation functions and a kernel
size of (2, 2) with a stride of 2. The kernel size was chosen to
successively half the feature dimensions. The decoder stage
consists of one linear layer, and 4 transposed convolution
layers with a kernel of (3, 3) and a stride of 2, where all layers
except the final one use relu activations. The output has the
shape 64 x 512 x 2. The hyperparameters were determined via
a parameter search.

TABLE III
SELECTED HYPERPARAMETERS OF THE AUTO ENCODING MODELS. THE
FIRST ROW INDICATES THE THREE EXPERIMENTS CONDUCTED AND THE

SECOND ROW THE AES TRAINED ON THE RESPECTIVE FEATURE SET,
WHERE Spec. IS SHORT FOR SPECTROGRAMS.

Experiment technical pre-swarm swarm
Parameter PCA Spec. PCA Spec. PCA Spec.

Learning rate 0.0011 0.0004 0.0014 0.0011 0.0147 0.0024
Epochs 170 290 40 150 220 200
Batch size 24 8 16 24 8 24
Latent size 16 208 80 216 192 16
Filters 24 64 8 16 20 24

V. EXPERIMENTAL SETUP

A. Pre-processing

As part of the pre-processing, the 50Hz grid frequency was
filtered from each sample. Two feature sets were computed on
the samples: spectrograms [14, 15, 16, 17], and PCA vectors
[14, 16] retrieved from the spectrograms. The parameters for
the spectrogram computation used an FFT window of size 127
and a hop length of 1294. The larger hop length was chosen
to ensure an even distribution of frames computed from the
audio signal and to capture information from events shorter
than 15 seconds, while maintaining a manageable feature size.
The resulting per-snippet feature has the shape 64 x 512 x 2,
where 64 is the number of frequency bins, 512 is the number
of FFT frames extracted from the audio signal, and 2 is the
number of channels, having one feature matrix per audio
channel. Preliminary experiments with varying numbers of
frames have shown, that more frames per input feature lead to
models that generalize poorly, while fewer frames per input
feature lead to insufficient model performance. For the PCA
features, sklearn [18] was used to compute a PCA with 64
components on the spectrograms per audio channel. Finally,
we applied a z-normalization per audio channel on the data.

B. Baselines

An Isolation Forest [19] with default parameters and its
contamination value equal to the percentage of the anomalous
samples present in the training data was used as a baseline.
We also trained a supervised Random Forest [20] with default
settings and a maximum tree depth of 2 to determine an upper
bound for the performance. Both algorithms were trained on
flattened spectrogram features.

C. Experiments

We conducted three experiments on the we4bee audio

dataset (cf. section III), following the pipeline visualized
in fig. 1: (1) The technical experiment trains the AE
to differentiate mechanical samples from event-related bee
samples. The mechanical sounds (camera, finedust) constitute
the normal behaviour and the event-related bee sounds (pre-
swarm, swarm) the anomalies. (2) The pre-swarm and (3)
swarm experiment train models to identify pre-swarming and
swarms respectively. Both models use the class other as
normal data for training.



TABLE IV
RESULTS OF THE AES ON THE RESPECTIVE FEATURE SETS. THE NUMBERS

INDICATE THE BALANCED ACCURACY SCORE (Acc.) AND THE F1 SCORE
OF THE ANOMALOUS DATA (F1) ON THE TEST DATASET. IF IS FOR

ISOLATION FOREST, RF FOR RANDOM FOREST, AND AE+X IS THE AUTO
ENCODER TRAINED ON THE PCA OR SPECTROGRAM FEATURES.

IF AE+PCA AE+Spec. RF
Experiment Acc. F1 Acc. F1 Acc. F1 Acc. F1

technical 58.72 28.00 68.90 39.00 65.02 35.00 98.41 95.00
pre-swarm 55.48 17.00 62.01 24.00 59.22 22.00 76.42 62.00
swarm 63.66 40.00 99.24 70.00 99.73 87.00 99.75 88.00

The AEs were trained with the mean squared error as the
loss function using the Adam optimizer [21]. The evalua-
tion metrics are balanced accuracy and the F1 score of the
anomalous class. The balanced accuracy score ranges from 0
(worst) to 1 (best) and is the averaged recall of both classes
(i.e., normal and anomalous behaviour) [22, 23]. The F1 score
ranges from 0 (worst) to 1 (best) and is the harmonic mean
of precision and recall. A held-out test set consisting of both
normal and anomalous behaviour was used to evaluate the
models’ performance. For all experiments, we used Optuna

[24] to conduct a separate hyperparameter study over 100 trials
using the search details defined in table II. The finally selected
values are given in table III.

VI. RESULTS AND DISCUSSION

The results in table IV show that the audio signals contain
sufficient information to allow accurate classification into their
respective classes. In all three experiments, our AE models
outperform the baseline Isolation Forests. Furthermore, in one
experiment the AEs match the performance of the supervised
Random Forest model.

In the first experiment technical, the Isolation Forest
reaches a baseline balanced accuracy of 58.72% in the detec-
tion of event-related bee sounds. This baseline is surpassed by
both AEs, with the AE trained on the PCA features reaching
68.90%. The Random Forest model reaches both the highest
balanced accuracy score, 98.41% and the highest F1 score on
the anomalous class, 95.00%. In this experiment, the winter
samples present in our dataset might provide an additional
challenge for the auto encoding models. While the automated
systems are running year-round, bee colonies change their
behaviour in the winter months [25]. In listening tests, we
found that while bees can still be heard humming, they do so
with strongly decreased intensity. We suspect that the limited
amount of winter data is not sufficient to let the AEs learn
this as normal behaviour. Conversely, collecting more samples
from the winter and the transition period should improve the
models’ performance.

The second experiment, pre-swarm is the most challenging
of the three experiments, as the results (c.f. table IV) show.
Here, the baseline Isolation Forest model is not able to discern
the bee’s everyday behaviour from the pre-swarming one. The
AE models fare better, both reaching a balanced accuracy
around 60%, but come with a low recall of just over 20%. The

Random Forest model reaches a higher balanced accuracy of
76.42%. The challenge in this experiment can be attributed to
two factors: First, in contrast to sudden swarming events, there
is only a minor difference between constant bee-humming and
pre-swarming behavior, though sound signals indicative of an
upcoming swarm are known in the literature [26, 27]. Second,
labeling a 15-minute duration preceding a known swarming
event as pre-swarm data may not be adequate since the pre-
swarming phase can commence much earlier. This could result
in a situation where numerous samples from the pre-swarm
phase are included in the class other. Increasing the amount of
pre-swarming data while adapting the labelling process seem
to be promising approaches to improve the performance.

In the third experiment, swarm, the baseline Isolation Forest
reaches a balanced accuracy score of 63.66%. The model is
clearly surpassed by the AEs and the Random Forest model,
with both approaches reaching a balanced accuracy score of
over 99%. While the AE trained on the spectrogram data and
the PCA-trained AE reach similar accuracy scores, their F1
scores of the anomalous class differ, which is markedly higher
for the spectrogram-only model. The calculation of the PCA
may result in reduced discriminability between samples from
the swarm and other classes.

VII. CONCLUSION

Smart beehives provide vast amounts of unlabeled data. In
this work, we created the we4bee audio dataset, which is
a collection of more than 1500 stereo audio recordings from a
smart beehive equipped with microphones. For this dataset, we
constructed a labelling pipeline that labels bee-related events
and sounds from mechanical sources. The challenges in this
dataset are twofold: First, the recordings contain both event-
related bee sounds and mechanical sounds. Second, the label
distribution is highly imbalanced, as the bee events constitute
only a minority of the total data samples. To identify event-
related bee sounds, we used a two-stage approach: first, we
learn to identify the mechanical sounds, then we learn to detect
the swarming and pre-swarming samples. Our studies show
that convolutional AEs can identify a swarming bee colony, but
cannot reach the performance of a Random Forest model in the
challenging detection of the pre-swarming phase. Analyzing
this further is a promising direction for future research and
involves gathering a larger quantity of labelled data samples
and deploying the models directly on smart beehives.
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