
Can Neural Networks Distinguish High-school
Level Mathematical Concepts?

Sebastian Wankerl∗†, Andrzej Dulny∗, Gerhard Götz†, Andreas Hotho∗
∗ CAIDAS, Julius-Maximilians University of Würzburg, Germany

{wankerl,dulny,hotho}@informatik.uni-wuerzburg.de
† Baden-Württemberg Cooperative State University, Mosbach, Germany

gerhard.goetz@mosbach.dhbw.de

Abstract—Processing symbolic mathematics algorithmically is
an important field of research. It has applications in computer
algebra systems and supports researchers as well as applied
mathematicians in their daily work. Recently, exploring the
ability of neural networks to grasp mathematical concepts has
received special attention. One complex task for neural networks
is to understand the relation of two mathematical expressions
to each other. Despite the advances in learning mathematical
relationships, previous studies are limited by small-scale datasets,
relatively simple formula construction by few axiomatic rules and
even artifacts in the data. With this work, we aim at overcoming
these limitations and provide a deeper insight into the repre-
sentation power of neural networks for classifying mathematical
relations. We introduce a novel data generation algorithm to
allow for more complex formula compositions and fully include
mathematical fields up to high-school level. We research several
tree-based and sequential neural architectures for classifying
mathematical relations and conduct a systematic analysis of the
models against rule-based as well as neural baselines with a
focus on varying dataset complexity, generalization abilities, and
understanding of syntactical patterns. Our findings show the
potential of deep learning models to distinguish high-school level
mathematical concepts.

Index Terms—learning mathematical relations, mathematical
syntax understanding, deep learning

I. INTRODUCTION

Mathematics can be considered as a symbolic language for
expressing universal concepts that can either originate from
mathematics itself or express concepts in more applied dis-
ciplines like deep learning, chemistry, or physics [1]. Similar
to every natural language, there is not just one mathematical
formulation of a certain concept but it can be written down
in endless, syntactically distinct, but mathematically equal
ways. While in a natural language one can express the same
statement by varying wording and sentence structure, in math-
ematics one can exchange operators, symbols, and constants.
As a very elementary example, one can consider the functions
f(x) = x+ x and g(x) = 2 · x which both describe the same
operation, namely the doubling of their inputs.

Apart from equal formulations of the same concept, math-
ematics also allows to model more sophisticated relations.
One of those is the derivative. Considering the function f(x)
defined above, its (most simplified) derivative is f ′(x) = 2. It
is, of course, possible to reformulate this derivative in infinitely
many equal ways.

For human beings, the difficulty of recognizing the equiv-
alence or other relationships between a given pair of math-
ematical expressions highly depends on their complexity.
While one can argue that above examples are very trivial
for someone who has at least a basic mathematical educa-
tion, the relationship between more complex terms is not as
easily recognizable. Hence, researchers developed computer
algebra systems (CAS) which, among other tasks, calculate
the equality of two expressions or their derivatives [2], [3].

However, these systems typically employ a large number
of rule-based algorithms (e.g. [4]–[7]), each tailored to a very
specific mathematical subproblem where the development of
the algorithm itself is a complex and time-consuming task.
Neural networks, on the other hand, have in recent years
successfully been applied in domains like natural language
processing [8], [9] or recommender systems [10], [11], where
traditional machine learning or rule-based systems used to be
dominant. Also in the field of mathematical problem solving,
exploring the representative capabilities of neural networks to
overcome the limitations of rule-based methods has become
an active field of research as described in the following.

A. Related Work

We contribute to the field of mathematical relation classi-
fication which is subject to several existing works [12]–[14].
It requires the networks to explicitly recognize mathematical
patterns instead of generating one single sample solution for
a given input. For example, all pairings of the expressions x2,
x·x, and x·(0+x) should be recognized as equivalent whereas
the pairs x2 and 2 · x as well as x2 and 2 · (x · 1) should be
identified as the derivative.

Arabshahi et al. [12] first evaluate neural networks on the
binary classification task of mathematical equivalence using a
dataset they previously introduced [15]. They apply neural net-
works working on textual representations of mathematical ex-
pressions as well as recursive neural networks like TreeSMU.
Their evaluation shows that representing the mathematical
expressions as trees is beneficial compared to text. Their work
is further extended by Mali et al. [13] who introduced higher-
order tree-recursive neural networks. However, the models
proposed in both works do not scale up to larger datasets
since they require recursive function calls which consequently
impede fast data-parallel GPU computations.



Moreover, the quality of the dataset used in these works
is criticized [16]: First, the set of axioms used as basis for
generating more complex expressions is arbitrary and does not
fully cover any mathematical field. For example, the distribu-
tive law is missing. Second, the generated negative examples
tend to be longer and more nested compared to the positive
examples and, most importantly, some mathematical functions
can even only appear in the negative examples. These biases
make the usefulness of this dataset and the obtained results
unconvincing since the networks are not required to learn
mathematical patterns but can exploit unrelated information.

A new dataset which averts above points of criticism is
presented in our previous work [14]. This dataset is based on
another set of axioms sufficient to generate arbitrary multi-
variate polynomials with up to three variables and constants
from the set of {−4, . . . , 4}. Moreover, we included two ad-
ditional mathematical relations namely derivative and variable
substitution. Still, the sole focus on polynomials leaves many
mathematical fields and more complex formulas unexplored.
In addition, with approximately 32, 000 samples, this dataset
is of rather limited size. It is referred to as polynomial dataset
in the following.

B. Contributions

In this work, we address the limitations of previous stud-
ies. First, we explore additional axioms for exponential and
logarithmic calculus as well as the field of trigonometry to
cover all relevant mathematical concepts up to high-school
level. We additionally augment the data in terms of set size
and mathematical relations to get a better insight into the
representation capabilities of neural networks on this task.
Overall, we provide a large scale dataset to evaluate the task
of mathematical relation classification and make the dataset as
well as the data generator publicly available1.

Second, we research the efficiency of several neural net-
work architectures that seem promising but remained so far
unacknowledged for the task of mathematical relation classifi-
cation. Inspired by the success of other tree-based architectures
on this task [14], we analyze both the TreeTransformer (tTf)
[17] as well as the tCNN model [18], a convolutional neural
architecture which is able to leverage tree-structured data and
has shown promising performances in other research areas
[18], [19]. We also incorporate a standard sequence based
Transformer (Tf) model [20] and the BERT model [9], as both
proved to be successful in other mathematical areas [21].

Third, we carry out an in depth analysis of the representation
capabilities of neural networks for mathematical relation clas-
sification. Investigations on the impact of the training dataset
size, the extrapolation capabilities to deeper formula trees
and specific tests on formula syntax understanding show the
potential of neural relation solvers.

II. DATA

This section discusses our data and its generation.

1Find our code at https://github.com/LSX-UniWue/neural-highschool-math

TABLE I
EXAMPLES FOR OUR TASK: CLASSIFY THE RELATION BETWEEN TWO
MATHEMATICAL EXPRESSIONS (e1 AND e2) AS ONE OF EQUIVALENT,
DERIVATIVE, SUBSTITUTION, CONSTANT OFFSET, AND UNRELATED.

e1 e2 label

2x+ xy x(2 + y) equivalent
xy − 3x y − 3 derivative
z(x+ y) (y + z)x substitution
xy − 3 2 + yx constant offset
1 + zx z + 2x unrelated

A. Datasets

We introduce two datasets of different mathematical scope.
Both datasets contain pairs of mathematical expressions and a
label that defines the relation between them. Hence the data
can be described as triples of the form (e1, e2, l) where e1, e2
denote mathematical expressions and l denotes the class label.

The first dataset (trigonometry dataset) contains mathemat-
ical expressions using the basic arithmetic operations, i.e.
addition, subtraction, multiplication, division, and power, as
well as the natural logarithm and the integers from −4 to 4
including zero. In addition, the trigonometric functions sin,
cos, and tan as well as the constants π and e are used for
its generation. It includes five different mathematical relations
(see table I for examples):

1) equivalence: the two terms are mathematically equiv-
alent for all positive values of the free variables, i.e.
∀x, y, z > 0 : e1 = e2

2) derivative: e1 is the derivative of e2 w.r.t. the first free
variable x, i.e. ∂

∂xe2 = e1
3) constant offset: the two terms e1 and e2 only differ in a

constant c, that is ∀x, y, z : e1 − e2 = c.
4) substitution: there exists a permutation σ ∈ S3 of

variables x, y and z such that, after substituting the
variables in e1, it is equivalent to e2, that is ∃σ ∈
S3∀x, y, z : σ(e1) = e2

5) unrelated: none of the above relations apply
Naturally, the expressions in all classes are not simplified.

For example, the simplest derivative of x ·x would be 2x, but
also 3x− x is a valid derivative that can occur in the dataset.

The second dataset (syntax dataset) only contains two
mathematical relations (equal and unrelated) and is constructed
such that the models can not exploit the token distribution by
basically reshuffeling the elements of a given tree (details see
section II-C).

The datasets are created starting from a set of predefined
axioms, as explicitly described in section II-B. For that, we use
the axioms introduced in our previous work [14] and extend
them with axioms of powers, logarithms, and trigonometry.
All expressions can contain up to three free variables x, y, z.

Following previous research [12]–[14] we consider the
depth of the parse tree of the mathematical expression as a
measure of its complexity. In such a parse tree, the leaf nodes
correspond to the symbols in an expression whereas the non-
terminal nodes correspond to operators and functions. Hence,

https://github.com/LSX-UniWue/neural-highschool-math


the deeper the tree, the more operators and functions have been
applied successively. See fig. 1 for examples of parse trees.

For our main experiments, we create samples of a depth
up to 10 and discard those which are of higher depth. Since
we hypothesize that the size of the data used in previous
research is a limitation, we increase the number of samples in
our new datasets. Precisely, the trigonometric dataset contains
8,208,926 training samples, 82,918 validation samples, and
83,756 test samples. The syntax dataset contains 2,956,662
training samples, 29,865 validation samples, and 30,166 test
samples. The datasets were split randomly. For our ablation
study, we also create an additional trigonometry test set
consisting of 70,000 samples of depth 11-12.

B. Data Generation of Trigonometry Dataset

We developed a data generation algorithm that works in
four major steps, where the first two steps of the algorithm
are alike to the data generation algorithm described in [14].
To generate datasets of above size, we run it simultaneously
on multiple machines. Subsequently, we merge the generated
data and remove the duplicates.

1) Axiom Substitution: We start with a set of 57 predefined
mathematical axioms (e.g. x+0 = x). To generate increasingly
more complex expressions based on these axioms, randomly
selected free variables in an axiom are first substituted with
another expression. The expressions constructed in this way
are then added to the set of axioms.

2) Equal Transformation: As a next step, we sample one of
the previously generated expressions and then find a matching
axiom and apply it. For this step, we can substitute variables
in the axioms with parts of the expression. We then search all
possible matches between the expression and the axiom and
apply it to one of the matches.

3) Creation of Equivalent Sets: As a next step, we parti-
tion all previously generated expressions e1, . . . en into sets
S1, . . . , Sm of equal expressions, such that ∀i, j, k : ei ∈
Sk ∧ ej ∈ Sk ⇔ ei = ej . To determine the equivalence
we sample ten random real numbers a1, . . . , a10, b1, . . . , b10,
c1, . . . , c10 between 10−5 and 2 for every free variable x, y, z,
respectively. If two expressions e1, e2 evaluate to the same
result for all sampled values, i.e. ∀i : e1[x/ai, y/bi, z/ci] =
e2[x/ai, y/bi, z/ci] we consider these two expressions as
equivalent. We evaluate the expressions to complex numbers
since this allows us to use negative numbers as arguments to
logarithms. Mathematically invalid samples are removed.

4) Sampling: In the final step, we create pairs of expres-
sions for all of the relations we consider.

a) Equal Expressions: To create pairs of equal expres-
sions we iterate over the equivalent sets and randomly sample
pairs from each set.

b) Derivatives: To create a pair of derivatives we sample
an expressions from one of the equivalent sets. Then, we
calculate its derivative using Sympy [3]. If it is equal to one
of the equivalent sets, we sample an expression from that set
and include it as the derivative in the sample. Otherwise we
transform the derivative multiple times (cf. section II-B2).

equivalent unrelated

Fig. 1. Example samples from the syntax dataset. The expression pair to the
right has been generated by permuting the leaf nodes and operators separately
for each side (marked by the arrows ↔ and ↔).

c) Constant Offset: Here, we iterate over all pairings of
the equivalent sets and, similar to section II-B3, check if the
difference between the elements of the classes evaluates to the
same constant. If this is the case, we sample one expression
from each set and add it as a pair to the dataset. However, we
exclude all samples where one class always evaluates to 0 as
this would overlay with the class of derivatives.

d) Permutation: This is similar to sampling the equiva-
lent expressions. Yet, instead of just adding the equal expres-
sions, we randomly substitute the variables in one of them,
for example by replacing all x with y, y with z and z with x.

e) Unrelated: To create this class we either sample pairs
of expressions from two different equivalent sets or sample a
pair of expressions from the same set and modify one of them
such that they are not equivalent anymore. The latter could be
achieved in two ways. We either replace the value of a node
in the tree, like replacing a multiplication with an addition or
one constant with another. Alternatively, we remove a branch
from the tree. Since this procedure could by accident generate
a pair that falls into one of the other classes, we ensure that
none of these relations apply using above described tests.

C. Data Generation of Syntax Dataset

Finally, for measuring the ability of neural networks to clas-
sify mathematical relations without any indication of the token
distribution, we generate a separate binary syntax dataset,
where each equivalent formula corresponds to exactly one
unrelated sample. Precisely, these two samples should neither
be distinguishable by the frequency of their consisting tokens,
nor by the structure of their corresponding trees.

We obtain this dataset by selecting equivalent samples
ei = ej constructed as above and shuffling the tokens of ei
and ej to obtain a non-equivalent sample ẽi ̸= ẽj consisting
of the same tokens and having the same tree-structure (cf.
fig. 1). To make sure that the newly generated expressions
are syntactically valid, we separately permute the leaf nodes
of the expression tree (variables and constants), the binary
operators and the unary functions. Since random shuffling



TABLE II
ACCURACY AND F1 SCORES OF THE TREETRANSFORMER (TTF)

COMPARED WITH WANKERL ET AL. [14]. IN EACH COLUMN WE BOLDED
OUT THE BEST PERFORMING MODEL AND UNDERLINED THE

SECOND-BEST.

Model Acc F1

Eqiv Deriv Subst Unrel

tRNN 0.754 0.669 0.820 0.817 0.689
tLSTM 0.832 0.857 0.830 0.940 0.726
tSMU 0.838 0.860 0.840 0.950 0.740

tCNN 0.657±0.007 0.600±0.004 0.770±0.008 0.660±0.011 0.613±0.012

Tf 0.676±0.005 0.622±0.003 0.833±0.003 0.707±0.005 0.476±0.003

tTf 0.832±0.004 0.773±0.003 0.886±0.005 0.962±0.009 0.742±0.004

Sympy 0.914 0.888 0.946 0.865 0.999
BoW 0.412 0.268 0.358 0.502 0.295

TABLE III
ACCURACY AND F1 SCORES (MEAN ±STDEV) OF THE MODELS FOR THE

TRIGONOMETRY DATASET. IN EACH COLUMN WE BOLDED OUT THE BEST
PERFORMING MODEL AND UNDERLINED THE SECOND-BEST.

Model Acc F1

Unrel Eqiv Deriv Subst Offset

Sh
al

lo
w

BoW 0.634±0.005 0.498±0.002 0.682±0.001 0.532±0.001 0.757±0.001 0.660±0.002

Sympy 0.672 0.610 0.804 0.730 0.810 0.512

BERT 0.970 ±0.001 0.948±0.002 0.947±0.001 0.980±0.000 0.991±0.000 0.976±0.001

Tf 0.793±0.012 0.779±0.087 0.732±0.025 0.814±0.016 0.902±0.008 0.779±0.011

tCNN 0.947±0.022 0.895±0.039 0.943±0.015 0.970±0.022 0.977±0.008 0.954±0.024

tTf 0.893±0.002 0.860±0.004 0.861±0.003 0.897±0.002 0.977±0.001 0.891±0.003

D
ee

p

BoW 0.635±0.005 0.680±0.005 0.542±0.004 0.757±0.005 0.658±0.005 0.496±0.003

Sympy 0.670 0.729 0.730 0.733 0.500 0.640

BERT 0.908 ±0.004 0.858±0.006 0.908±0.001 0.958±0.006 0.986±0.001 0.813±0.014

Tf 0.743±0.013 0.641±0.015 0.753±0.009 0.843±0.008 0.891±0.013 0.508±0.032

tCNN 0.853±0.043 0.788±0.054 0.861±0.025 0.947±0.033 0.958±0.017 0.649±0.141

tTf 0.847±0.012 0.798±0.015 0.857±0.002 0.884±0.010 0.980±0.002 0.677±0.073

could potentially generate another equivalent expression, we
check if the permuted expression is indeed not equivalent to
the original expression. If this criterion is met, we add (ei, ej)
and (ẽi, ẽj) as a positive resp. negative example to the dataset.

III. EXPERIMENTS AND DISCUSSION

In this section we discuss our experiments and obtained
results for all datasets. Moreover, we present the results of
our ablation study, namely the extrapolation of the models to
unknown depth.

A. Models

In our study, we explore several model architectures that
were so far not researched for the task of mathematical relation
classification. For all models, we optimize the hyperparameters
using Optuna [22] and train them using the Adam optimizer
with lr = 1e−4. We evaluate two models making use of tree-
structured input: the tCNN [18] and the TreeTransformer [17].
For the tCNN, we optimized the number of layers lc and filters
in each layer, the size of the input embeddings Ei, the output
size of the tree representation t, and the number of layers lf
and their size s of the fully-connected layer block subsequent

to the convolutions. The best configuration uses (lc = 7, Ei =
32, t = 128, lf = 3, s = 64). For the TreeTransformer, we
explored configurations varying the number of encoder and
decoder layers le, ld, the sizes of the embeddings E and the
feed-forward layers lf , the number of attention heads h, and
the dropout values d. The best configuration uses (le = 3,
ld = 6, E = 256, lf = 512, h = 4, d = 0.025).

Additionally, we finetune the BERT-base [9] encoder on our
task to evaluate the application of general purpose language
models for mathematical relation classification. Last, we in-
clude a standard transformer encoder-decoder model in our
experiments to be able to quantify the benefit of the tree-
structured design of the TreeTransformer model as opposed
to the standard sequential approach. Hereby, we also optimize
its hyperparameters, similar to the TreeTransformer. The best
configuration uses (le = 1, ld = 1, E = 256, lf = 1024,
h = 16, d = 0.28). We train the transformer model to
output one single token corresponding to the class label of
the input expression. The expressions are given in prefix, i.e.
Polish, notation. This notation has proved to be beneficial on
other symbolic mathematical tasks [21], [23] since it reflects a
flattened representation of the parse tree and hence represents
the precedence of each part of the input in a compact way.

So far, related work did not assess whether the proposed
models are able to outperform existing rule-based systems or
even simple neural network approaches for the task [12]–[14].
To this end, we include both the rule-based and freely available
CAS Sympy [3], as well as a neural bag-of-words model which
is able to capture simple statistical token distributions from
the input. The baselines are incorporated in our experiments
as described in the following.

1) Sympy: To apply Sympy, we parse the expressions
with its sympify method, configured to already simplify
the equation as much as possible. Moreover, while parsing
we pass the assumption that all variables are positive, i.e.
x, y, z ∈ R>0. This is necessary since some equalities only
hold for positive assignments of the variables and thus this
information helps Sympy to correctly simplify expressions.

Given two parsed expressions p1 and p2 we check their
relations as follows. If the difference p1−p2 equals 0 we assign
them the label equivalent. Otherwise, if the difference does not
have any free variables, we assign them to the constant offset
class. Subsequently, we let Sympy calculate the derivative of
p2 and check if it is equivalent to p1 like above. As a last
step we calculate all variable permutations of p2, and check
if any of them equals p1. If none of these conditions applies,
we assign it to the class of unrelated examples.

2) Bag-of-words: Additionally, we use a multilayer percep-
tron (MLP) trained on a bag-of-words representation of the
mathematical expressions as a baseline in our experiments.
For each sample, consisting of two mathematical expressions,
we count the number of occurrences of each symbol from
the vocabulary in either of the formulas and normalize it
with respect to the total number of symbols. This generates
a bag-of-words vectors of the formulas consisting of relative
frequencies of each vocabulary token. This representation does



not contain any syntactical information about the expressions.
In our experiments we train a MLP classifier using the

described bag-of-words representation of the formulas. The
MLP consists of five hidden layers, each with size 256 and
rectified linear units as nonlinear activation functions after
each layer. The final layer calculates the logits for each class.
The network is trained using the cross-entropy loss and a
learning rate of 0.001 with the Adam optimizer.

B. Experiment 1: Polynomial Dataset

In this first experiment, we compare the so far disregarded
TreeTransformer and tCNN approaches against existing tree-
structured models from literature using the polynomial dataset
[14]. The results are presented in table II. The TreeTrans-
former hereby outperforms the standard sequential transformer
approach and yields a comparable accuracy to the models
used in our previous work [14]. Precisely, the accuracy of the
TreeTransformer is 83.2% which is only 0.6 percentage points
(pp.) behind the best performing model of [14] (TreeSMU).
Moreover, we observed that the TreeTransformer outperformed
the TreeSMU on three of the four examined classes.

However, the rule-base Sympy baseline outperforms all
neural models in this setting, an aspect which has not been
examined in previous work. It is most likely due to the fact
that the axioms used are of simple structure in a mathematical
sense and hence can be easily covered by rule-based sys-
tems motivating our following experiments on more complex
datasets. Another aspect is the limited size of the dataset that
strongly influences the performance of neural approaches [24].

C. Experiment 2: Trigonometry Dataset

The performance of the models and the baselines on our
newly introduced dataset is shown in the upper half of table III.
We report both the overall accuracy of the models as well as
the F1 scores of the respective classes. We state the mean as
well as the standard deviation obtained after 5 runs.

It is clearly visible that the finetuned BERT model outper-
forms all others by a large extend and that the bag-of-words
baseline performs poorly. This observation holds for both the
overall accuracy as well as for the F1 score of each class. In
total, the BERT model predicts 97.0% of the samples correctly
which is approximately 30 pp. over the accuracy of Sympy.

The weak performance of the bag-of-words model com-
pared to the other neural architectures supports the hypothesis
that neural networks can exploit the structural patterns un-
derlying the mathematical relationships. Nevertheless, it also
indicates that the token distribution can in fact be used for
classifying the mathematical relations clearly above the level
of chance. We hypothesize that it is due a shift in the token
distribution between the mathematical relations, as we will
further elaborate when we discuss the separate F1 scores.

Considering the tree-based neural models, both of them
outperform the transformer. This aligns with previous findings
which also indicate that tree-structured input is beneficial for
this task [12], [13] when training the models from scratch: The
transformer model only receives a sequential representation of

TABLE IV
ACCURACY AND F1 SCORES OF THE MODELS ON THE SYNTAX DATASET.
IN EACH COLUMN WE BOLDED OUT THE BEST PERFORMING MODEL AND

UNDERLINED THE SECOND-BEST.

Model Accuracy F1

Equal Unrelated

Bag-of-words 0.503±0.001 0.668±0.001 0.00±0.000

Sympy 0.830 0.824 0.835

BERT 0.975±0.004 0.975±0.004 0.975±0.004

Transformer (Tf) 0.889±0.001 0.885±0.001 0.893±0.001

tCNN 0.992±0.000 0.992±0.000 0.991±0.000

TreeTransformer (tTf) 0.981±0.001 0.980±0.001 0.981±0.001

the input and thus has to deduce the grammar of mathematics
from it. In contrary, the tree-based models are given a much
stronger knowledge since the trees directly encode the link
between operators and operands as well as functions and their
arguments. While the transformer model only achieves an
accuracy of 79.3%, the tCNN already achieves an accuracy of
94.7%. The TreeTransformer is slightly weaker, achieving an
accuracy of 89.3%. Finally, all neural models outperform the
rule-based Sympy which only achieves an accuracy of 67.2%.

Considering the different mathematical relations, all models
perform best on the class of substitution with an F1 score
between of 90.2% for the transformer and 99.1% for BERT. It
is also the relation where the bag-of-words baseline performs
best (75.7% F1 score). This can be explained by a character-
istic change in the token distribution of the expressions. Since
all variables from one side are exchanged by another variable
from the other side, this leads to a rather balanced frequency
distribution of the three possible variables x, y, z.

The second most easy to recognize relation is the one of
derivatives with F1 scores between 81.4% (transformer) and
98% (BERT). By contrast, the bag-of-words baseline performs
particularly poor on this class (53.2%). We hence hypothesize
that instead of an easily perceivable change in the token
distribution, the derivation results in very prominent structural
patterns which can only be recognized by the models that can
learn mathematical syntax. Examples for such patterns are the
product rule, the chain rule, or the derivation of powers.

Finally, we want to point out that the unrelated class is
the hardest to identify for most neural models, including the
bag-of-words. Since this class consists of samples where no
well-defined mathematical relation holds, we assume it to be
difficult because expressions do not follow a certain pattern.

D. Experiment 3: Mining Patterns on the Syntax Dataset

In this experiment we evaluate the models’ capabilities of
learning mathematical syntax. As described in section II-C,
the syntax dataset is constructed in a way that models can
neither use the token distribution nor the overall structure of
the expressions when making a decision. Hence, this dataset
only has the two classes equivalent and unrelated.

The results of this experiment are summarized in table IV.
As expected, the bag-of-words model cannot learn anything



on this dataset and hence reaches only an accuracy of 50.3%.
In contrary, all models that can principally learn mathematical
syntax (BERT, transformer, tCNN, TreeTransformer) are able
to recognize the syntactical patterns and outperform the rule-
based Sympy baseline by a large extent: while Sympy only
predicts 83% of the data correctly, the neural models reach
accuracies between 88.9% (transformer) and 99.2% (tCNN).

For this task, both the tCNN as well as the TreeTransformer
outperform the BERT model. We conclude that explicitly
passing the parse tree of the expressions to the models is
especially helpful when it comes to learning the syntax.

E. Generalization Capabilities: Evaluation on Deeper Trees

As a last experiment we evaluate whether the models still
recognize mathematical patterns if the data they receive as
input is of higher complexity than the data they were trained
on. As discussed in section II, we use the depth of the parse
tree as the measure of complexity. While the networks were
trained on trees of a depth up to ten, they are now evaluated
on depths of 11 and 12. We use the models trained on
the trigonometry dataset for this experiment. The results are
presented in the bottom half of table III.

All tested networks still outperform the Sympy baseline,
although we notice a large decline in their performance. It is
highest for the tCNN which looses 9.4 pp of performance
compared to the shallow trees. BERT looses 6.2 pp. The
most stable are the sequence-to-sequence models, both loosing
only around 5 pp (transformer) and 4.6 pp (TreeTransformer).
Hence, we conclude that the TreeTransformer learns the most
stable representations for the mathematical patterns and can
hence most successfully mine them in trees of unseen depths.
The models which explicitly receive the tree structure of the
expressions (TreeTransformer and tCNN) are still outperform-
ing the transformer on sequential input data, however, the
highest absolute performance can still be obverved for BERT.

IV. CONCLUSION

In the study, we explored the capabilities of various neural
network models for the task of classifying mathematical rela-
tionships. We show that on a small dataset from literature built
from few axioms, a rule-based CAS still outperforms neural
networks and that the type-token distribution can be used for
identifying the mathematical relationship with high accuracy.

Hence, we argue that previous datasets lack of size and com-
plexity and propose a more complex data generation approach
which includes additional relations and mathematical axioms.
We showed that as the complexity of the dataset increases, the
performance of the rule-based CAS decreases while the neural
approaches improve. In further experiments we examined
the ability of the models to learn the task of mathematical
equivalence solely from the syntax and studied the ability to
generalize to more complex mathematical equations.

REFERENCES

[1] J. O. Bullock, “Literacy in the language of mathematics,” The American
Mathematical Monthly, vol. 101, no. 8, pp. 735–743, 1994.

[2] J. Von Zur Gathen and J. Gerhard, Modern computer algebra. Cam-
bridge university press, 2013.

[3] A. Meurer, C. P. Smith, M. Paprocki, O. Čertı́k, S. B. Kirpichev,
M. Rocklin, A. Kumar, S. Ivanov, J. K. Moore, S. Singh, T. Rathnayake,
S. Vig, B. E. Granger, R. P. Muller, F. Bonazzi, H. Gupta, S. Vats,
F. Johansson, F. Pedregosa, M. J. Curry, A. R. Terrel, v. Roučka,
A. Saboo, I. Fernando, S. Kulal, R. Cimrman, and A. Scopatz, “Sympy:
symbolic computing in python,” PeerJ Computer Science, vol. 3, 2017.

[4] D. H. Bailey, J. M. Borwein, and A. D. Kaiser, “Automated simplifica-
tion of large symbolic expressions,” Journal of Symbolic Computation,
vol. 60, pp. 120–136, 2014.

[5] B. Buchberger and R. Loos, Algebraic simplification. Springer, 1982.
[6] A. H. Gebremedhin and A. Walther, “An introduction to algorith-

mic differentiation,” Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, vol. 10, no. 1, p. e1334, 2020.

[7] M. Bronstein, Symbolic integration I: transcendental functions.
Springer Science & Business Media, 2005, vol. 1.

[8] X. Qiu, T. Sun, Y. Xu, Y. Shao, N. Dai, and X. Huang, “Pre-trained
models for natural language processing: A survey,” Science China
Technological Sciences, vol. 63, no. 10, pp. 1872–1897, 2020.

[9] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” in
Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), 2019, pp. 4171–4186.

[10] F. Sun, J. Liu, J. Wu, C. Pei, X. Lin, W. Ou, and P. Jiang, “BERT4Rec:
Sequential Recommendation with Bidirectional Encoder Representations
from Transformer,” in Proceedings of the 28th ACM International
Conference on Information and Knowledge Management, 2019.

[11] W.-C. Kang and J. McAuley, “Self-attentive sequential recommenda-
tion,” in 2018 IEEE international conference on data mining (ICDM).
IEEE, 2018.

[12] F. Arabshahi, Z. Lu, P. Mundra, S. Singh, and A. Anandkumar, “Com-
positional generalization with tree stack memory units,” arXiv preprint
arXiv:1911.01545, 2019.

[13] A. Mali, A. G. Ororbia, D. Kifer, and C. L. Giles, “Recognizing and
verifying mathematical equations using multiplicative differential neural
units,” in Proceedings of the AAAI Conference on Artificial Intelligence,
vol. 35, 2021, pp. 5006–5015.

[14] S. Wankerl, A. Dulny, G. Götz, and A. Hotho, “Learning mathematical
relations using deep tree models,” in 2021 20th IEEE International
Conference on Machine Learning and Applications (ICMLA), 2021.

[15] F. Arabshahi, S. Singh, and A. Anandkumar, “Combining symbolic
expressions and black-box function evaluations for training neural
programs,” in International Conference on Learning Representations,
2018.

[16] E. Davis, “A flawed dataset for symbolic equation verification,” arXiv
preprint arXiv:2105.11479, 2021.

[17] X.-P. Nguyen, S. Joty, S. Hoi, and R. Socher, “Tree-structured attention
with hierarchical accumulation,” in International Conference on Learn-
ing Representations, 2020.

[18] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin, “Convolutional neural
networks over tree structures for programming language processing,” in
Thirtieth AAAI conference on artificial intelligence, 2016.

[19] M. B. Kusharki, S. Misra, B. Muhammad-Bello, I. A. Salihu, and
B. Suri, “Automatic classification of equivalent mutants in mutation
testing of android applications,” Symmetry, vol. 14, no. 4, p. 820, 2022.

[20] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, 2017, pp. 5998–6008.

[21] G. Lample and F. Charton, “Deep learning for symbolic mathematics,”
in International Conference on Learning Representations, 2019.

[22] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A next-
generation hyperparameter optimization framework,” in Proceedings
of the 25th ACM SIGKDD international conference on knowledge
discovery & data mining, 2019, pp. 2623–2631.

[23] S. D’Ascoli, P.-A. Kamienny, G. Lample, and F. Charton, “Deep
symbolic regression for recurrence prediction,” in Proceedings of the
39th International Conference on Machine Learning, 2022.

[24] A. Alwosheel, S. van Cranenburgh, and C. G. Chorus, “Is your dataset
big enough? sample size requirements when using artificial neural
networks for discrete choice analysis,” Journal of Choice Modelling,
vol. 28, 2018.


	Introduction
	Related Work
	Contributions

	Data
	Datasets
	Data Generation of Trigonometry Dataset
	Axiom Substitution
	Equal Transformation
	Creation of Equivalent Sets
	Sampling

	Data Generation of Syntax Dataset

	Experiments and Discussion
	Models
	Sympy
	Bag-of-words

	Experiment 1: Polynomial Dataset
	Experiment 2: Trigonometry Dataset
	Experiment 3: Mining Patterns on the Syntax Dataset
	Generalization Capabilities: Evaluation on Deeper Trees

	Conclusion
	References

