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Abstract. Feature relevance explanations currently constitute the most
used type of explanation in anomaly detection related tasks such as cy-
ber security and fraud detection. Recent works have underscored the
importance of optimizing hyperparameters of post-hoc explainers which
show a large impact on the resulting explanation quality. In this work, we
propose a new method to set the hyperparameter of replacement values
within Shapley-value-based post-hoc explainers. Our method leverages
ideas from the domain of generative image inpainting, where genera-
tive machine learning models are used to replace parts of a given input
image. We show that these generative models can also be applied to tab-
ular replacement value generation for Shapley-value-based feature rele-
vance explainers. Experimentally, we train a denoising diffusion proba-
bilistic model for generative inpainting on two tabular anomaly detection
datasets from the domains of network intrusion detection and occupa-
tional fraud detection, and integrate the generative inpainting model into
the SHAP explanation framework. We empirically show that generative
inpainting may be used to achieve consistently strong explanation quality
when explaining different anomaly detectors on tabular data.

Keywords: Feature Relevance · XAI · SHAP · Diffusion · Perturbation.

1 Introduction

Explainable Artificial Intelligence (XAI) is currently an ever-increasing research
topic in the domain of anomaly detection [30], with most attention being de-
voted to feature relevance explanations [30]. While many works simply apply
existing post-hoc explainers with default configurations to obtain feature rele-
vance explanations in anomaly detection [26,28], recent work shows that setting
post-hoc explainer hyperparameters can have large impacts on explanation qual-
ity [26,28]. Popular Shapley-value-based feature relevance explainers for instance
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Fig. 1: Illustration of Shapley value explanations with I) exemplary mean re-
placements r and II) our alternative generative inpainting process with diffusion
models on a fictional dataset with two weight attributes w1, w2 and a price pr
that holds the normal behavior of w1+2·w2 = pr. Note that replacing perturbed
features (marked ■) with r (mean) causes resulting data to not adhere to the
governing equation, while inpainting respects kept values (marked □) to find
suitable replacements.

require a heuristic for replacing perturbed feature values with other values as
many anomaly detectors are not able to handle missing input features [26]. To
handle this perturbation process, common choices are the specification of static
reference data that is accessed for replacement values [2,15] or the marginaliza-
tion of perturbed features, i.e., through using values from nearest neighbors in
training data [15,21]. As replacing perturbed values without considering the kept
values may result in artificial anomalies that introduce an erroneous signal into
the perturbation process, Takeishi and Kawahara [24] introduce an optimization-
based process for generating replacement values in anomaly detection and pro-
vide multiple relaxations for computational feasibility.

In this work, we explore an alternative option to obtain replacement values
within Shapley-value-based explainers in anomaly detection. Our approach uses
methods from inpainting with generative machine learning models [4], which we
refer to as generative inpainting from hereon. This task, which has longstanding
use in computer vision [4], as well increasing use in other domains such as sen-
sor processing [11], human-computer music co-creation [29], and video processing
[32], uses generative models to replace marked features within a given input with
suitable values according to the remaining original feature values. In contrast to
popular replacement value techniques for Shapley value explanations, generative
inpainting respects dependencies to kept values while replacing marked features,
and additionally enables efficient creation of perturbed datapoints during the ex-
planation phase without the need for further datapoint optimizations as previous
work in anomaly detection. We show that the functioning of generative inpainting
models closely corresponds to the task of finding replacement values for a given
datapoint under perturbations, and demonstrate how to leverage generative in-
painting to supply Shapley-value-based explainers with replacement values for

- preprint - 2



J. Tritscher et al. 2. RELATED WORK

given datapoint perturbations. We illustrate the process of generative inpainting
within Shapley value explanations in Figure 1. To achieve generative inpaint-
ing on tabular data, we train a Tabular Denoising Diffusion Probabilistic Model
(TabDDPM) [31] and use the RePaint inpainting procedure [14] to generate
replacement values for given perturbations. We integrate generative inpainting
within the SHapley Additive exPlanations (SHAP) [15] explanation framework
and conduct experiments on two tabular security datasets from the domains of
network intrusion detection and occupational fraud detection. Evaluations on
three different anomaly detectors per dataset reveal that generative inpainting
can effectively serve as a source of replacement values for perturbation-based
explainers, achieving good explanation performance across all detectors.

In summary, our contributions are as follows: 1) We show the compatibil-
ity between replacement values in Shapley value explanations and inpainting
through generative models. 2) We demonstrate this compatibility on tabular
data by training a TabDDPM [31] diffusion model with the RePaint inpainting
procedure [14] and integrating the resulting model into the SHAP [15] expla-
nation framework. 3) We quantitatively evaluate these SHAP explanations with
generative inpainting replacements on two datasets and three anomaly detectors.
4) We provide code for our experiments that integrates generative inpainting
with TabDDPM into the SHAP explanation framework.4

2 Related Work

As Shapley-value-based explainers are commonly used to obtain feature rele-
vance explanations, multiple approaches exist for obtaining replacement values
for features under perturbation. Reference-based approaches using for example
the zero vector or the mean of the training data are considered as reasonable but
arbitrary first choices in this area [2]. Marginalization of features e.g. through
nearest neighbor search constitutes an additional option that might however
influence explanations through its sensitivity to the data distribution [22]. Fur-
ther, some model-specific choices of reference values exist in literature. For in-
stance, Takeishi [23] uses the structure of their principle component analysis-
based anomaly detection model to forgo the need of replacement values, but ob-
tain an approach that is limited to principle component analysis-based anomaly
detection. Beyond these simple heuristic approaches, Takeishi and Kawahara [24]
provide a method to generate replacement values conditional to the values to
keep. Their proposed method uses gradient-based input optimization and can
therefore be applied to all fully differentiable anomaly detectors. In contrast to
these works, we are the first to explore generative inpainting for the task of ob-
taining replacement values for any anomaly detector, regardless of architecture.

As we intend to leverage generative inpainting for model explanations, we
require a generative machine learning model for our experiments. Here, diffusion
models are a recent state-of-the-art architecture for data generation with mul-
tiple recent applications to tabular data. TabDDPM [10] combines a Gaussian

4 Code and data are available at: https://professor-x.de/xai-diffusion.
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diffusion model and a multinomial diffusion model to handle both numerical
and categorical input data respectively. TabADM [31] apply a Gaussian diffu-
sion model for tabular anomaly detection and add a datapoint rejection step to
handle anomalies in the training data. DTPM [13] specialize a diffusion model
for tabular anomaly detection by removing some generative abilities and focus-
ing on the anomaly detection task. While this primes the model for anomaly
detection, it removes its generative abilities, making it incompatible with our
approach. From the available architectures we select TabDDPM [10] as it pro-
vides generative capabilities in contrast to DTPM and, in contrast to TabADM,
is specifically constructed to handle the large amounts of categorical data inher-
ent in our occupational fraud detection and network intrusion detection data.

Upon the training of a generative machine learning model, we further require
a strategy to conduct inpainting using this model. While generative diffusion
models may be used directly for inpainting by repeatedly feeding a noised version
of the kept inputs into the model during the sampling process, this approach is
known to create edge artifacts as the model can not build smooth transitions
between replaced and kept inputs [16]. To mitigate this effect, Nichol et al. [16]
showcase how to fine-tune a generative diffusion model to the task of inpainting.
In contrast, RePaint [14] is an inpainting strategy for image-based diffusion
models that does not require any re-training of the underlying diffusion model.
Instead, RePaint introduces additional loops into the generative diffusion process
to ensure homogeneity between kept and newly generated areas of an image.
Since RePaint does not require training and can be applied to a given diffusion
model post-hoc, therefore reducing the computational complexity by omitting
the training phase, we utilize it as inpainting strategy in this work.

3 Methodology

In this section, we first give a brief overview of Shapley value explanations and
their inherent need for replacement values. We then introduce the task of gener-
ative inpainting and demonstrate how to adapt this task to provide replacement
values for Shapley value explanations. Finally, we introduce the generative in-
painting process based on the generative TabDDPM model [10] and the RePaint
inpainting process [14] used throughout our experiments.

3.1 Shapley Value Explanations and Replacement Values

To explain the decision process of an anomaly detector, feature relevance expla-
nations are a commonly used technique that ranks the relevance of each input
feature with respect to the output of the detector [30]. One popular way of ob-
taining these explanations is based on Shapley values [15,23]. Shapley values [20]
constitute a popular result from cooperative game theory that evenly distribute
a jointly generated gain to a group of participants by iteratively assessing a fic-
tional gain that would be achieved by different subgroups. By viewing the input
features of a data point as participants and setting the machine learning model
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output as the generated gain, the framework of Shapley values may be used to
obtain a relevance score ϕi for each feature i through

ϕi =
∑

S⊆N\{i}

|S|!(n− |S| − 1)!

n!
(v(S ∪ {i})− v(S)), (1)

with a set of features N = {1, 2, . . . , n} and a function v(S) that calculates the
gain achieved by the subgroup S ⊆ N . Since the gain that we wish to calculate
is the anomaly score of the model to explain, calculating Shapley values requires
a way to calculate the anomaly score obtained by using only a subset of features
and removing all features that are not present in the subgroup.

This poses a significant challenge for a variety of machine learning models,
as most models are not able to handle missing inputs. To remedy this issue,
common implementations of Shapley value explanations such as SHapley Addi-
tive exPlanation (SHAP) [15] use reference data to replace features missing in
the subgroup with default values from the reference data instead of deleting the
feature. Thus for a given datapoint x = [x1, x2, . . . , xn] of dimensionality n to
explain and a subgroup S of features to investigate, a reference point r ∈ Rn is
used to replace all features not in the subgroup S through h(x, r, S) = x̂ with

x̂s =

{
xs, if s ∈ S

rs, else
, ∀s ∈ N. (2)

The resulting perturbed datapoint may then be scored by the original model,
providing a new anomaly score that serves as the subgroup gain v(S).

As demonstrated in [26], this perturbation procedure can produce problem-
atic inputs in the domain of anomaly detection, as the combination of replaced
and kept features may introduce unwanted anomalous signals. As previously ex-
plored in [24], this issue needs to be remedied by choosing the replacing values
for missing features conditional such that the kept feature values do not intro-
duce new unwanted anomalies into the data. This leads to obtaining references
r ∼ k(x, S) through a function k that produces replacement vectors for a given
datapoint x and a defined set S of features to keep.

3.2 Perturbation with Generative Inpainting

Following the notation of [14], generative inpainting takes an input x ∈ X and
an associated binary mask m ∈ Xbin of same dimensionality, that determines
which inputs are to be kept (1) or replaced (0) through a generative inpainting
model. Generative inpainting i : X ×Xbin → X then aims to produce a new data
point that combines the old inputs that are to be kept m⊙x with matching new
inputs (1−m)⊙ g(m⊙ x,m) from a generative model g : X ×Xbin → X that is
conditioned on the kept inputs and the binary mask.

i(x,m) = m⊙ x+ (1−m)⊙ g(m⊙ x,m) (3)

5 - preprint -
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Here we note that the inputs of the generative process, namely the binary
mask of features to keepm and the feature values x, contain the same information
as the inputs of the conditional replacement value generation process r ∼ k(x, S).
To make the replacements compatible with generative inpainting, we convert the
Shapley-value-based set representation of kept features S to a binary mask

ms =

{
1, if s ∈ S

0, else
, ∀s ∈ N. (4)

Through this mapping we are able to directly use generative inpainting models
to provide perturbed datapoints for the calculation of Shapley values.

3.3 Tabular Diffusion with TabDDPM

In the following sections, we describe our process of obtaining a generative model
for tabular data and the inpainting strategy used to achieve generative inpatining
on tabular anomaly detection data.

TabDDPM [10] is a generative denoising diffusion probabilistic model (DDPM)
[6] designed specifically to generate both numerical and categorical tabular data.
DDPM models are trained by reversing a so called diffusion process that itera-
tively converts a given input to random noise. The diffusion process is defined
as a Markov chain

q(x1:T |x0) :=

T∏
t=1

q(xt|xt−1) (5)

that gradually adds a small amount of noise q(xt|xt−1) to a datapoint x0 over T
steps, such that the final point xT consists of entirely random noise. The reverse
process

pθ(x0:T ) :=

T∏
t=1

pθ(xt−1|xt) (6)

also describes a Markov chain that gradually reconstructs data from noise and
may be approximated through a neural network that parameterizes the function
pθ(xt−1|xt) and removes one step of noise with parameters θ. Training a network
with a known noising function q on a given dataset by learning the reverse func-
tion pθ through optimizing a variational lower bound then allows to iteratively
apply the learned function pθ to random noise to generate new datapoints.

To model tabular data through this diffusion process, TabDDPM joins both
a Gaussian diffusion model that uses Gaussian noise within q for numerical data
and a multinomial diffusion model that applies noise to a multinomial distri-
bution in q for categorical data. Gaussian diffusion models parameterize both
q and p as Gaussian distributions, using neural networks to approximate both
means and variances of the Gaussian distribution p. Gaussian DDPM models
[6] further ease the learning process by fixing the mean and learning a diago-
nal variance matrix for p, which enables them to replace the variational lower
bound with a simple mean squared error between true and predicted added noise
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when training the neural network. Since Gaussian noise is not readily applicable
to categorical attributes, multinomial diffusion models [8] instead add noise to
the probability distribution of all possible values for a categorical feature and
then re-draw the categorical feature according to the noised distribution. Train-
ing the neural network for p then focuses on predicting the one-step de-noised
probability distribution for each categorical feature while observing only the re-
drawn feature values and the current diffusion step, using the Kullback-Leibler
divergence between true and predicted distribution as loss function. TabDDPM
simply combines both models by jointly training the contained neural networks
with a combined loss function.

3.4 Generative Inpainting for Diffusion Models

While diffusion-based generative models are directly applicable to inpainting by
generating only the desired area of the input while feeding a noised version of
the input to keep into the model during each denoising step, this process may
cause artifacts due to the model’s inability to adapt newly generated inputs to
kept input [16]. The recent RePaint [14] approach proposes an adaptation of this
denoising process for inpainting that prevents artifacts without any fine-tuning.

Formally, RePaint generates the unknown (i.e. removed) feature values through
the neural network-based reverse diffusion process from random noise

xunknown
t−1 = pθ(xt−1:T ) (7)

while taking the values for kept features from the original input x0 by adding
noise according to the current timestep t through

xknown
t−1 = q(x1:t−1|x0). (8)

The resulting latent input in each timestep for a given mask m is then joint
together through

xt−1 = m⊙ xknown
t−1 + (1−m)⊙ xunknown

t−1 . (9)

To harmonize x such that xknown and xunknown do not diverge and create a
combined x that does not match the data distribution, RePaint adds an addi-
tional noising step to the joint xt−1 such that

x′
t = q(xt|xt−1). (10)

On subsequent steps, this x′
t is then integrated in the calculation of xunknown

by replacing Equation (7) with

xunknown
t−1 = pθ(x

′
t−1:T ), (11)

effectively creating a loop that provides the denoising component which gen-
erates xunknown with contextual knowledge of xknown and therefore allowing
the diffusion model to create smooth boundaries between the kept known and
newly generated unknown segments. This noising-denoising-loop is repeatedly
used throughout the data generation process. For the full iterative procedure
with pseudo code, we refer to the original paper [14].

7 - preprint -



4. EXPERIMENTS J. Tritscher et al.

Table 1: Data splits with number of anomalies and labeled ground truth expla-
nations for ERP and CIDDS-001 data.

(a) ERP

split samples anomalies explanations

train 32, 337 0 0
eval 36, 778 50 0
test 37, 407 86 86

(b) CIDDS-001

split samples anomalies explanations

train 12, 525, 224 0 0
eval 10, 310, 540 910, 375 0
test 8, 451, 274 746, 230 80

4 Experiments

We quantitatively evaluate the suitability of generative inpainting for anomaly
explanations on two security datasets from the domains of network intrusion
detection and occupational fraud detection.

4.1 Data, Anomaly Detectors, and Metrics

In order to evaluate our proposed replacement generation procedure, we use two
established anomaly detection datasets with ground truth explanations. The
ERP dataset [25] contains the enterprise resource planning data of a production
company, where multiple occupational fraud cases are included next to normal
business behavior. The CIDDS-001 dataset [18] consists of a simulated computer
network of virtual machines, which interact within the network based on normal
actions or attack scenarios. Dataset statistics are listed in Table 1. For both
datasets, fully trained anomaly detectors and a binary explanation ground truth
for selected anomalies within the unseen test set are openly available [26,28] and
may be used to evaluate feature relevance XAI approaches.

The fully trained anomaly detectors include an autoencoder neural network
(AE) [3], a one-class support vector machine (OC-SVM) [19], and an isolation
forest (IF) [12] with hyperparameters and preprocessing strategies optimized on
the validation splits. The optimized models all use one-hot encoding for cate-
gorical features and quantization for numerical features and achieve high mean
average precision (PR) scores as seen in Table 2.

Table 2: PR scores of the used fully trained anomaly detectors on the test data
of CIDDS-001 and ERP after the hyperparameter tuning by [27,28]. Higher is
better.

Detector CIDDS-001 ERP

OC-SVM [19] 0.995 0.73
AE [3] 0.992 0.69
IF [12] 0.993 0.49

- preprint - 8
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To obtain quantitative scores of explanation quality, explainers are applied to
existing, fully trained anomaly detectors on the anomalies with available ground
truth. The resulting explanations are compared to the binary explanation ground
truth through area-under-the-receiver-operator-characteristic (ROC) and cosine
similarity (COS), which are established metrics for the evaluation of feature
relevance explanations with binary ground truth [5,9] that can be applied to
directly compare binary ground truth and continuous feature relevance scores in
a single datapoint. While the ROC score describes the sensitivity to anomalous
features in relation to false positives for multiple thresholds [5], COS denotes
the direct similarity between given feature relevance scores and the entire binary
ground truth [9]. To obtain a quantitative score of all explanations, these metrics
are then aggregated across all labeled anomalies [5,9].

4.2 Generative Models and Inpainting

In order to perform generative inpainting on both security datasets, we first train
two separate TabDDPM models in a generative setting using the official PyTorch
[17] implementation. To remain compatible with the fully trained anomaly de-
tectors described in Section 4.1, we follow the train-validation-test split and the
preprocessing steps of the fully trained anomaly detectors during TabDDPM
training, while only removing the anomalies from the validation data to assess
the generative performance of the models on purely normal data. For model op-
timization, we conduct a hyperparameter search using the optuna framework [1]
with 100 trials over the search space listed in Table 3, following the recommen-
dations of the TabDDPM authors [10], while limiting batch size to 4096, adding
an intermediate diffusion step option of 250, and adding a training step option
of 30.000 steps to ensure convergence. Training is carried out on the purely nor-
mal training splits and validation optimizes the TabDDPM loss on the unseen
validation set with removed anomalies. As inpainting process we use the Re-
Paint framework as described in Section 3.4 with its default parameters from
the original paper without optimization.

Having obtained both anomaly detectors and generative diffusion models, we
follow the experimental setup of previous work on feature relevance explanations

Table 3: Hyperparameter space for TabDDPM within the optuna optimization
framework [1] over 100 steps, following the authors’ recommendations in [10].

Hyperparameter Search space

Learning rate LogUniform{[0.00001, 0.003]}
Diffusion steps train Cat{100, 250, 1000}
Training steps Cat{5000, 20000, 30000}
MLP Layer count Cat{2, 4, 6, 8}
MLP layer dimension Cat{128, 256, 512, 1024}
Batch size 4096

9 - preprint -
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on the two datasets [26,28] by applying SHAP on the detectors for the anomalies
with available ground truth. We integrate repaint into the official implementation
of the SHAP explanation framework [15] by retrieving both the datapoint and
the desired perturbation masks from SHAP and supplying the inpainted data
back into the framework.

Lastly, we compare the inpainted replacement values with other established
choices for replacement values by observing the quality of the obtained explana-
tions through the ROC and COS scores as described in Section 4.1. We compare
against commonly used replacement strategies in anomaly detection [26], namely
using cluster centers of k-means clustering on the training data (kmeans), the
mean of the training data (mean), the zero vector (zeros), the nearest neigh-
bor of the explained datapoint within the training data (NN), as well as the
gradient-based optimization strategy of [24] (lopt).

4.3 Results

We report the explanation scores of SHAP with varying references on three
anomaly detectors per dataset and evaluate random explanations drawn from
uniform noise for comparison. We observe that random explanations achieve a
mean ROC score of around 50% and a mean COS score of roughly 0%, match-
ing the intuition of the metrics. On the occupational fraud detection dataset
ERP in Table 4 we see that our generative inpatining approach with TabDDPM
manages to outperform all other references for both the OC-SVM and the IF de-
tector. Note that the interpretation of the standard deviation here is non-trivial
due to the complex effects of averaging across multiple ROC scores [7], but
high values can be seen as indicators of the varying complexity of ground truth
explanations across datapoints, with the data containing both datapoints with
simple and challenging explanations simultaneously. On the AE detector, the
gradient-based optimization procedure, which is only applicable to differentiable
detectors, achieves highest results, suggesting that it may be beneficial to rely
on this technique when applicable. Nevertheless, our diffusion-based approach
also achieves decent explanation scores on this detector, making it a method
that successfully obtains high quality explanations throughout all datasets. This
is especially relevant, as other reference approaches showcase a more erratic be-
havior throughout the different anomaly detectors. While these approaches may

Table 4: Mean and standard deviation of explainer performance in % for SHAP
on multiple detectors using different reference values on the ERP data.

AE OC-SVM IF avg. over detectors
Explainer ROCXAI COSXAI ROCXAI COSXAI ROCXAI COSXAI ROCXAI COSXAI

random explanation 50.7 (15.8) 0.3 (17.0) 50.7 (15.8) 0.3 (17.0) 50.7 (15.8) 0.3 (17.0) 50.7 (15.8) 0.3 (17.0)

SHAP + kmeans 75.4 (14.2) 44.8 (12.2) 57.2 (12.4) 17.7 (14.2) 70.3 (23.6) 39.8 (28.7) 67.6 (16.7) 34.1 (18.4)

SHAP + mean 74.4 (17.1) 32.3 (25.1) 54.6 (13.2) 13.7 (16.7) 64.2 (26.4) 26.2 (39.8) 64.4 (18.9) 24.1 (27.2)
SHAP + zeros 82.3 (14.5) 58.2 (16.3) 64.2 (15.5) −8.4 (12.7) 66.7 (27.8) 25.8 (47.0) 71.1 (19.3) 25.2 (25.3)

SHAP + NN 56.0 (15.1) 16.8 (38.0) 60.5 (12.5) 32.1 (28.2) 53.7 (13.3) 12.3 (33.9) 56.7 (13.6) 20.4 (33.4)

SHAP + lopt 88.6 (11.2) 66.1 (20.5) N/A N/A N/A N/A N/A N/A
SHAP + TabDDPM 71.9 (15.2) 47.8 (19.8) 72.4 (20.3) 43.2 (28.8) 73.3 (17.6) 45.1 (23.4) 72.5 (17.7) 45.4 (24.0)
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at times achieve very high explanation quality on one detector, they may also
obtain scores that are close to entirely random explanations on other detec-
tors, as observable for instance with kmeans and mean on the OC-SVM (57.2%
and 54.6% ROC respectively), or the NN references on the AE detector (56.0%
ROC). The proposed inpatining method using TabDDPM manages to maintain
explanation quality considerably above random noise even on the least well per-
forming AE explanations (71.9% ROC), making it a stable and high-performing
option for obtaining replacement values.

On the network intrusion detection dataset CIDDS-001 in Table 5 we ob-
serve consistently higher explanation scores for all references compared to the
ERP dataset. On this dataset, our generative inpainting method falls short of
surpassing competing reference methods, which exhibit performance spikes with
certain detectors. For instance kmeans achieves 91.3% ROC on the AE detector
or zeros yield 87.2% ROC on the IF detector. Nevertheless, our generative inpa-
tining approach manages to provide the second highest explanation scores across
all detectors (82.1% ROC), while other methods show considerable decreases in
explanation quality across detectors, e.g. with kmeans on IF (73.5% ROC) or
zeros on AE (51.9% ROC). While the findings from CIDDS-001 imply that the
generative model might not consistently yield the most suitable references via
inpainting for every data instance, we note that it still maintains high explana-
tion scores across all anomaly detectors by using a standard generative model
and an inpainting procedure without any hyperparameter optimization, clearly
indicating potential for further enhancement and refinement in future work.

Overall, using a standard generative model for tabular data in combina-
tion with a recent inpainting technique, we successfully demonstrate an initial
proof of concept for utilizing generative inpainting to determine reference val-
ues within perturbation-based explanations. Our proposed generative inpaint-
ing strategy manages to perform exceptionally well on the ERP data, while
also maintaining acceptable explanation performance on the CIDDS-001 data
throughout all anomaly detectors without providing poor explanations as is ob-
servable for other replacement options. This shows the feasibility of obtaining
reference values through generative inpainting, while leaving further room for
improvement through adaptations of generative models and inpainting strate-
gies to the underlying domain.

Table 5: Mean and standard deviation of explainer performance in % for SHAP
on multiple detectors using different reference values on the CIDDS-001 data.

AE OC-SVM IF avg. over detectors
Explainer ROCXAI COSXAI ROCXAI COSXAI ROCXAI COSXAI ROCXAI COSXAI

random explanation 50.6 (21.7) 1.7 (38.1) 50.6 (21.7) 1.7 (38.1) 50.6 (21.7) 1.7 (38.1) 50.6 (21.7) 1.7 (38.1)

SHAP + kmeans 91.3 (8.7) 71.8 (15.9) 88.1 (8.7) 68.6 (12.6) 73.5 (19.3) 52.8 (23.1) 84.3 (12.2) 64.4 (17.2)

SHAP + mean 82.6 (12.7) 57.4 (19.6) 90.1 (7.5) 71.0 (12.9) 65.8 (18.7) 33.4 (25.7) 79.5 (13.0) 53.9 (19.4)
SHAP + zeros 51.9 (11.7) −20.7 (16.6) 85.2 (9.2) 48.1 (13.9) 87.2 (8.7) 65.9 (13.2) 74.8 (10.0) 31.1 (14.6)
SHAP + NN 75.4 (11.6) 61.1 (15.7) 71.3 (11.9) 56.4 (18.1) 68.8 (11.7) 43.8 (22.7) 71.8 (11.7) 53.8 (18.8)
SHAP + lopt 88.5 (8.7) 68.9 (14.3) N/A N/A N/A N/A N/A N/A

SHAP + TabDDPM 83.9 (13.9) 65.9 (15.5) 82.9 (10.6) 59.7 (12.9) 79.6 (12.6) 57.9 (15.2) 82.1 (12.4) 61.2 (14.5)
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5 Conclusion

In this paper, we introduced a novel way to find suitable replacement data for
perturbation-based feature relevance explainers in anomaly detection. We ex-
plored the connection between these replacement values and the task of image
inpainting from the domain of computer vision, showing a compatibility that
allows the use of generative inpainting models for replacement value generation.
To demonstrate the feasibility of generative inpainting for replacement data gen-
eration, we integrated a generative inpainting strategy into the popular SHAP
explanation framework. We conducted experiments on two security datasets from
occupational fraud detection and network intrusion detection, training a gener-
ative diffusion model for each dataset and applying SHAP with the proposed
generative inpainting procedure to explain multiple existing anomaly detectors.
Our experiments show that SHAP achieves stable explanation quality using ref-
erence values from generative inpainting on both datasets and all evaluated
anomaly detectors, making generative inpainting a reliable choice for reference
values in anomaly detection. The proposed work is a two stage approach that
leverages generative machine learning models and inpainting procedures from
computer vision. While we demonstrated the viability of this approach in first
experiments using an established generative model and an existing inpainting
strategy, we note that the approach necessitates a model with good generative
capabilities. On the used network intrusion detection data, for instance, the use
of different data preprocessing strategies for anomaly detectors and generative
models may further enhance generative performance, as choosing preprocessing
schemes based on the anomaly detector may result in datasets that sufficiently
encode anomalous behavior, but impede the generative model’s ability to learn
all data characteristics. Additionally, while we illustrated our approach on occu-
pational fraud detection and network intrusion detection, it may be applied to
further domains where complex data dependencies need to be respected during
perturbations.
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