Recommender Systems
The Data Science Chair develops new methods to recommend items to users to enhance their overall user experience in a variety of application scenarios. For example, we help users to find relevant products to buy or users of our social bookmarking system BibSonomy to annotate websites and publication with keywords (tags). In this context we leverage various information like navigation paths, user behavior or buying behavior. We utilize different machine learning algorithms, including deep learning, for our recommendation methods. To validate some of our methods, we can deploy and test our methods in our live system BibSonomy, which is run and developed by the Data Science Chair.
Projects
We are currently working on the following projects:
Publications
Here is a list of selected publications. You can find the full list here.
-
Improving Session Recommendation with Recurrent Neural Networks by Exploiting Dwell Time. in CoRR (2017). abs/1706.10231
-
Leveraging User-Interactions for Time-Aware Tag Recommendations. in CEUR Workshop Proceedings (2017).
-
Tag Recommendations for SensorFolkSonomies. (2013). (Vol. 1066)
-
Leveraging publication metadata and social data into FolkRank for scientific publication recommendation. in RSWeb '12 (2012). 9--16.
-
Tag Recommendations in Social Bookmarking Systems. in AI Communications, (E. Giunchiglia, ed.) (2008). 21(4) 231-247.
Challenges
We also co-organized recommendation challenges to allow other researchers to develop new recommendation methods:
- ECML PKDD Discovery Challenge 2013
Recommending given names for babies - ECML PKDD Discovery Challenge 2009
Content-based, graph-based and online tag recommendation - ECML PKDD Discovery Challenge 2008
Recommendation of tags in our social tagging system BibSonomy (second task)