Deutsch Intern
    Data Science Chair

    Publications by Andreas Hotho

    These publications are hosted by BibSonomy.

    MicroTrails: Comparing Hypotheses About Task Selection on a Crowdsourcing Platform

    Becker, Martin; Borchert, Kathrin; Hirth, Matthias; Mewes, Hauke; Hotho, Andreas; Tran-Gia, Phuoc in Proceedings of the 15th International Conference on Knowledge Technologies and Data-driven Business page 10:1--10:8 . New York, NY, USA , ACM , 2015 .

    To optimize the workflow on commercial crowdsourcing platforms like Amazon Mechanical Turk or Microworkers, it is important to understand how users choose their tasks. Current work usually explores the underlying processes by employing user studies based on surveys with a limited set of participants. In contrast, we formulate hypotheses based on the different findings in these studies and, instead of verifying them based on user feedback, we compare them directly on data from a commercial crowdsourcing platform. For evaluation, we use a Bayesian approach called HypTrails which allows us to give a relative ranking of the corresponding hypotheses. The hypotheses considered, are for example based on task categories, monetary incentives or semantic similarity of task descriptions. We find that, in our scenario, hypotheses based on employers as well the the task descriptions work best. Overall, we objectively compare different factors influencing users when choosing their tasks. Our approach enables crowdsourcing companies to better understand their users in order to optimize their platforms, e.g., by incorparting the gained knowledge about these factors into task recommentation systems.
    Further Information
    Tags analysis  crowd  crowdsource  hyptrails  microworker  myown  sourcing  working