piwik-script

Intern
    DMIR Research Group

    Related Literature

    • An Ensemble Method to Produce High-Quality Word Embeddings. Speer, Robert; Chin, Joshua (2016).
      cite arxiv:1604.01692Comment: 12 pages, 3 figures
       
    • Derivation of Backpropagation in Convolutional Neural Network (CNN). Zhang, Zhifei (2016). 7.
       
    • ConceptRDF: An RDF presentation of ConceptNet knowledge base. Najmi, Erfan; Malik, Zaki; Hashmi, Khayyam; Rezgui, Abdelmounaam (2016). 145--150.
       
    • Enriching Word Vectors with Subword Information. Bojanowski, Piotr; Grave, Edouard; Joulin, Armand; Mikolov, Tomas (2016).
      cite arxiv:1607.04606Comment: Accepted to TACL. The two first authors contributed equally
       
    • An Empirical Exploration of Recurrent Network Architectures. Józefowicz, Rafal; Zaremba, Wojciech; Sutskever, Ilya in JMLR Workshop and Conference Proceedings, F. R. Bach, Blei, D. M. (reds.) (2015). (Vol. 37) 2342-2350.
       
    • LSTM: A Search Space Odyssey. Greff, Klaus; Srivastava, Rupesh Kumar; Koutník, Jan; Steunebrink, Bas R.; Schmidhuber, Jürgen in CoRR (2015). abs/1503.04069
       
    • Convolutional Neural Networks for Sentence Classification. Kim, Yoon (2014). 1746--1751.
       
    • Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. Cho, Kyunghyun; van Merrienboer, Bart; Gulcehre, Caglar; Bahdanau, Dzmitry; Bougares, Fethi; Schwenk, Holger; Bengio, Yoshua (2014).
      cite arxiv:1406.1078Comment: EMNLP 2014
       
    • Neural Machine Translation by Jointly Learning to Align and Translate. Bahdanau, Dzmitry; Cho, Kyunghyun; Bengio, Yoshua (2014).
      cite arxiv:1409.0473Comment: Accepted at ICLR 2015 as oral presentation
       
    • Retrofitting Word Vectors to Semantic Lexicons. Faruqui, Manaal; Dodge, Jesse; Jauhar, Sujay K.; Dyer, Chris; Hovy, Eduard; Smith, Noah A. (2014).
      cite arxiv:1411.4166Comment: Proceedings of NAACL 2015
       
    • Glove: Global Vectors for Word Representation. Pennington, Jeffrey; Socher, Richard; Manning, Christopher D (2014). (Vol. 14) 1532--1543.
       
    • Training recurrent neural networks. Sutskever, Ilya in University of Toronto, Toronto, Ont., Canada (2013).
       
    • On the difficulty of training Recurrent Neural Networks. Pascanu, Razvan; Mikolov, Tomas; Bengio, Yoshua (2012).
      cite arxiv:1211.5063Comment: Improved description of the exploding gradient problem and description and analysis of the vanishing gradient problem
       
    • Integration of world knowledge for natural language understanding Ovchinnikova, Ekaterina (2012). (Vol. 3) Springer Science & Business Media.
       
    • Natural Language Understanding and World Knowledge. Ovchinnikova, Ekaterina in Integration of World Knowledge for Natural Language Understanding (2012). 15--37.
       
    • BLEU: a method for automatic evaluation of machine translation. Papineni, Kishore; Roukos, Salim; Ward, Todd; Zhu, Wei-Jing (2002). 311--318.
       
    • Finding Structure in Time. L., Elman Jeffrey in Cognitive Science (1990). 14(2) 179-211.
       

    Hinweis zum Datenschutz

    Mit 'OK' verlassen Sie die Seiten der Universität Würzburg und werden zu Facebook weitergeleitet. Informationen zu den dort erfassten Daten und deren Verarbeitung finden Sie in deren Datenschutzerklärung.

    Hinweis zum Datenschutz

    Mit 'OK' verlassen Sie die Seiten der Universität Würzburg und werden zu Twitter weitergeleitet. Informationen zu den dort erfassten Daten und deren Verarbeitung finden Sie in deren Datenschutzerklärung.

    Social Media
    Kontakt

    Andreas Hotho
    DMIR Research Group
    Am Hubland
    97074 Würzburg

    Tel.: +49 931 31-86731
    Fax: +49 931 31-86732

    Suche Ansprechpartner

    Hubland Süd, Geb. M2